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Abstract—Feed-Forward Neural Network (FFNN) can be used to 
recognize the characters from images. This paper compares the seven 
different training algorithms belonging to two classes: Gradient 
descent (with variable learning rate, with variable learning rate and 
momentum, resilient back-propagation), and conjugate gradient 
(Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart, 
scaled conjugate gradient), which are used to train the BP network. 
The different training algorithms are compared in terms of training 
performance, training time and number of training iterations to reach 
the optimal weights. 
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1. INTRODUCTION 
The simultaneous availability of inexpensive powerful 
computers, powerful learning & training algorithms, and large 
databases, have caused rapid progress in character recognition 
in the last few years. While recognizing individual character is 
only one of many problems involved in designing a practical 
recognition system, it is an excellent benchmark for 
comparing shape recognition methods. This study concentrates 
on different training algorithms that operate directly on size-
normalized images. 

Seven different training algorithms belonging to two classes: 
gradient descent (with variable learning rate, with variable 
learning rate and momentum, resilient back-propagation), and 
conjugate gradient (Fletcher-Reeves update, Polak-Ribiére 
update, Powell-Beale restart, scaled conjugate gradient) are 
evaluated using a dataset of 36 binary images. Weights were  
initialized to random values and Training stops when any of 
these conditions was satisfied: 
1. Maximum Epoch 
2. Minimum Gradient 
3. Performance Goal 

2. CHARACTER RECOGNITION 
2.1 Feed-Forward Neural Network (FFNN) 
Neural network (NN) can be considered as non-linear 
statistical data modeling tool that can model almost  any 

nonlinear relationship that may exist between inputs and 
outputs or find patterns in data. These computational models 
are characterized by their  architecture, learning algorithm and 
activation function [1]. The feed-forward NN (FFNN) 
architecture is selected in this study. The FFNN consists of 
one or more nonlinear hidden layers. The hidden layers’ 
activation functions are sigmoidal functions that empower the 
network to learn the complex and nonlinear relationship 
between the inputs and the targets. In this architecture, a 
unidirectional weight connection exists between each two 
successive layers. A two-layer FFNN with sigmoidal functions 
in the hidden layer and output layer can potentially 
approximate any function with finite number of 
discontinuities, provided a sufficient number of neurons exists 
in the hidden layer [2]. The Log-sigmoid transfer function was 
used in hidden layer and the output layer.  

3. THE ALGORITHM 

In MATLAB, a feed-forward back-propagation network is 
created using newff function. User needs to provide input 
argument such as input and output data, hidden layer and node 
size, node activation function, networks training algorithm and 
etc. The GDA, Rprop and SCG training are specified using 
traingda, trainrp and trainscg respectively. The initial weight 
of the networks is randomly created by default, every time the 
newff is called. User also has a choice to initialize the random 
initial weight using rands command. The BP weight training 
can be directly executed using train function once the 
networks and the parameters are properly set. Here ms is 
column normalized array of each character and of size <1008 
X 36>. 

net =newff(minmax(ms), [25,36], {'logsig', logsig'},'traingda'); 

4. TRAINING ALGORITHMS 

Training is the process of determining the optimal weights of 
the NN. This is done by defining a performance function 
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(which is usually the mean square error between the network’s 
output and the desired target) and then minimizing it with 
respect to weights. The minimization is performed by 
calculating the gradient using a technique called back-
propagation which can be done in batch or incremental styles 
[1]. In this paper, we used the batch training style. The NNs 
were trained using different training algorithms belonging to 
two back-propagation classes described as follows: 

4.1 Gradient Descent (GD) 

Gradient descent is also known as steepest descent, or the 
method of steepest descent. This method updates the network 
weights and biases in the direction of the performance 
function that decreases most rapidly, i.e. the negative of the 
gradient. One iteration of this algorithm can be written as 
follows [1]: 

Δwi = -μigi   (1) 

Where, Δwi is the vector of weights changes, gi is the vector of 
gradients and μi is the learning rate that determines the length 
of the weight update. Although the GD algorithm is easy to 
implement, it has several disadvantages such as slow learning, 
requiring a good training dataset, getting stuck in local 
minima and having little or no robustness to noise. Other 
modifications can be applied to improve the performance of 
GD algorithm. 

1) Gradient Descent with Variable Learning Rate (GDA): 

The learning rate parameter is used to determine how fast the 
BP method converges to the minimum solution. The larger the 
learning rate, the bigger the step and the faster the 
convergence. However, if the learning rate is made too large 
the algorithm will become unstable. In the adaptive learning 
technique, the step size is chosen as large as possible while 
keeping learning stable. In each iteration, if the new error is 
greater than the old one by a predefined ratio (here set to 
1.04), the new parameters (weights) are discarded and the 
learning rate is decreased (here by multiplying by 0.7). 
Otherwise, the new parameters are kept. If the new error is 
less than the old error, the learning rate is increased (here by 
multiplying by 1.05). The initial value of learning rate was set 
to 0.01. In Matlab, Backpropagation training with an adaptive 
learning rate is implemented with the function ‘traingda’. 

2) Gradient Descent with Variable Learning Rate and 
Momentum (GDX):  

It combines adaptive learning rate with momentum training. In 
order to reduce the sensitivity of the network to fast changes 
of the error surface, a fraction of the previous weight change 
(called momentum term) can be added to the gradient 
decreasing term, as follows [1]: 
 

Δwi = -μigi + p Δwi-1            (2) 

where p(lies between 0 to 1) is the momentum parameter. The 
momentum parameter p was set to 0.9 in our application. It is 

invoked in the same way as traingda, except that it has the 
momentum coefficient (mc) as an additional training 
parameter. 

3) Resilient Backpropagation (RP) 

It is a first-order optimization algorithm. For the FFNNs with 
sigmoidal activation functions, the gradient can be of very 
small magnitude even though the weights are far from their 
optimum values. This is due to the slope of sigmoidal 
functions that approaches zero as the input magnitude 
increases [3]. A solution to this problem is to use only the 
direction of the gradient to update the weights, while the 
amount of the update is determined by another update factor 
(here initially set to 0.07). When the gradient has the same 
sign for two successive iterations, the update factor is 
increased by a ratio (here set to 1.05). The update factor is 
decreased (here by multiplying by 0.8) when the gradient 
changes sign from the previous iteration. When the derivative 
is zero, the update value is not changed [3] It also has the nice 
property that it requires only a modest increase in memory 
requirements. You do need to store the update values for each 
weight and bias, which is equivalent to storage of the gradient. 

4.2 Conjugate Gradient (CG) 

All the conjugate gradient algorithms start out by searching in 
the steepest descent direction (negative of the gradient) on the 
first iteration. 

p0= -g0                (3) 

A line search is then performed to determine the optimal 
distance to move along the current search direction:  

xk+1 = xkαkpk           (4) 

Then the next search direction is determined so that it is 
conjugate to previous search directions. The general procedure 
for determining the new search direction is to combine the 
new steepest descent direction with the previous search 
direction [7]: 

pk = -gk  + βkpk-1        (5) 

where βk is a constant which is computed to force the 
consecutive directions to be conjugate. 

The various versions of the conjugate gradient algorithm are 
distinguished by the manner in which the constant βk is 
computed. 

1) Fletcher-Reeves Update (CGF):  
This method updates βk as the norm squared of the current 
gradient vector divided by the norm squared of the previous 
gradient vector [4]: 

βk  = gk
Tgk / g

T
k-1gk-1    (6) 

2)  Polak-Ribiére Update (CGP):  
This method updates βk as the dot product of the previous 
change in the gradient vector with the current gradient vector 
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divided by the norm squared of the previous gradient vector 
[4]: 

βk  = ∆gk-1
Tgk / g

T
k-1gk-1     (7) 

3)  Powell-Beale Restarts (CGB):  
In all CG algorithms the search direction is periodically reset 
to the negative direction of the gradient. The standard reset 
point occurs when the number of iterations is equal to the 
number of network parameters (weights and biases), but there 
are other reset methods that can improve the efficiency of 
training. One such reset method was proposed by Powell and 
Beale. This technique restarts if there is very little 
orthogonality left between the current gradient and the 
previous gradient. This is tested with the following inequality: 
[5]: 

|gT
k-1gk-1  | ≥  0.2 ||gk||

2 
          (8) 

If this condition is satisfied, the search direction is reset to the 
negative of the gradient. 

4)  Scaled Conjugate Gradient (SCG):  
The introduced CG algorithms so far are based on a line 
search in each iteration which is computationally expensive. 
To overcome this shortcoming, the SCG method combines the 
trust region approach with CG algorithm. SCG does not 
contain any user dependent parameters whose values are 
crucial for the success of SCG. By using a step size scaling 
mechanism, SCG avoids time consuming line search 
operations which makes the algorithm faster than any other 
second order algorithm. For more details, the reader is referred 
to [6].  

Same as the GD algorithms, in most of the CG algorithms, the 
step size is adjusted at each iteration. Here, the Charalambous’ 
search method [7] was utilized in all the CG algorithms except 
the SCG to adjust the step size. 

5. EXPERIMENTAL RESULTS 

5.1 Database 

The database used to train and test the systems described in 
this paper contains the binary images of characters as shown 
in Fig. 1.  

 
Fig. 1: Numeric and alphabetic Symbols 

All the images were size normalized to fit in a 42x24 pixel 
box (while preserving the aspect ratio).  Each character was 
normalized using column normalization in MATLAB. The 
normalized data was used as the inputs to the network. There 
were 36 target values which correspond to one for each 
training sample and size of the network was 1008 x 36. 

5.2  Evaluation Criteria 

The BP estimation results were compared in terms of training 
performance. The training performance of the NNs was 
compared in terms of 1) training time, 2) number of training 
iterations to reach the optimal weights, 3) mean square error 
and 4) Regression rate. 

5.3 Parameter setup 

The default value of Matlab ANNs training parameters were 
used for all the algorithms except for the learning rate, goal 
and the maximum number of epochs. 

net.trainParam.goal=0; 

net.trainParam.epoches = 2000; 

net.trainParam.lr = 0.01; 

5.4 Train and Test Strategy 

Same dataset was used for all training algorithms. The 
network was trained with 100 % training dataset. Training was 
done using feed-forward net with 1 hidden layer and at 
different number of hidden units. Input and output layers were 
having log sigmoid transfer function. The mean square error 
(MSE) is the condition to terminate training of all the BP 
methods. MSE is originally set at 0, however, these BP 
methods can also stop once the training exceeds the number of 
epoch set. After the Training, network is simulated with same 
input data to calculate the accuracy. 

5.5. Results 

The performance of different training algorithms is shown in 
Table1, and Table2. Table 1 shows the performance of 
training algorithms at 25 hidden units. Table 2 shows the 
performance of  

Table 1: Training performance at 25 hidden units 

Avg. 
No: 
of 

epoch
s 

Avg. 
Traini

ng 
Time(s

) 

MSE Regressi
on 

Accuracy(
%) 

 
Gradient 
Descent 

GD
A 

1568 13 2.89e-
05 

0.9998 97.2 

GD
X 

583 5 0.00157 0.97069 94.4 

RP 59 0.7 2.08e-
05 

0.99962 100 

 
 
Conjugat

CGP 2000 54 0.00674 0.87163 77.8 
CG
B 

2000 57 0.01014 0.7922 41.6 
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e 
Gradient 

SCG 345 5 0.00077
2 

0.98561 100 

CGF 2000 53 0.0229 0.45771 16 
 

Table 2: Training Performance at 50 hidden units 

Avg. 
No: of 
epoch

s 

Avg. 
Trainin

g 
Time(s) 

MSE Regressio
n 

Accurac
y (%) 

 
Gradient 
Descent 

GDA 614 8 0.00156 0.9708 97.2 
GDX 479 7 1.78e-

05 
0.9986 100 

RP 34 1 7.27e-
07 

0.9999 100 

 
 
Conjugate 
Gradient 

CGP 327 13 0.00307 0.94152 86.1 
CGB 438 16 0.00224 0.95773 88.8 
SCG 279 5 9.63e-

07 
0.9999 100 

CGF 1288 47 0.00771 0.84641 77.8 

 
training algorithms at 50 hidden units. These values were 
averaged over the 10 runs of the algorithms. The results were 
obtained on Intel i5, 2.67 GHz processor with 3.0 GB of 
RAM. Among the GD algorithms with 25 hidden units, 

The best results in terms of both speed and accuracy are 
obtained using RP. Among the GD algorithms with 50 hidden 
units, GDX has improved training performance than GDA, but 
RP is still leading in overall performance. 

In case of CG, with 25 hidden units, CGF and CGB have 
worst training performance and accuracy.  CGP has improved 
training performance, but training time is much longer.  

Best results are obtained using SCG in terms of time, speed 
and Accuracy.  

Among the CG algorithms with 50 hidden units, 

CGF has worst training performance and accuracy while CGP 
and CGB have almost same training parameters. Again, best 
results are obtained using SCG with much improved training 
performance. 

Comparing all the seven different training algorithms together, 
it is found that the training performances significantly differ. 
However, the best training performance and fastest training 
are obtained using the RP algorithm.  

6. CONCLUSION AND FUTURE WORK 

Comparison of the results of the study indicated that the 
original research hypothesis that RP would perform faster in 
all cases was proven correct. In CG, SCG was superior in 
training performance and training time. To eliminate the 
possible confounding variables in this study, the number of 
trials could be increased and the size of the data sets also 
enlarged. Other back-propagation based algorithms could be 
comparatively tested fairly easily, utilizing the same data sets 
and similar network structures. 

Besides the BP methods, there also are other neural networks 
methods like the radial basis function (RBF) that we can 
implement in character recognition. These methods will be 
studied next. 
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