
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015 pp. 366-369
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Comparison of Feed Forward Neural Network
Training Methods for Visual Character

Recognition
Sukhleen Bindra Narang1, Manjeet Singh2 and Kunal Pubby3

1Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab
2Ex-Student Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab

3M.tech. Student, Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab
E-mail: 1sukhleen2@yahoo.com, 3kunalpubby02@gmail.com

Abstract—Feed-Forward Neural Network (FFNN) can be used to
recognize the characters from images. This paper compares the seven
different training algorithms belonging to two classes: Gradient
descent (with variable learning rate, with variable learning rate and
momentum, resilient back-propagation), and conjugate gradient
(Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart,
scaled conjugate gradient), which are used to train the BP network.
The different training algorithms are compared in terms of training
performance, training time and number of training iterations to reach
the optimal weights.

Keywords: Gradient descent; conjugate gradient.

1. INTRODUCTION
The simultaneous availability of inexpensive powerful
computers, powerful learning & training algorithms, and large
databases, have caused rapid progress in character recognition
in the last few years. While recognizing individual character is
only one of many problems involved in designing a practical
recognition system, it is an excellent benchmark for
comparing shape recognition methods. This study concentrates
on different training algorithms that operate directly on size-
normalized images.

Seven different training algorithms belonging to two classes:
gradient descent (with variable learning rate, with variable
learning rate and momentum, resilient back-propagation), and
conjugate gradient (Fletcher-Reeves update, Polak-Ribiére
update, Powell-Beale restart, scaled conjugate gradient) are
evaluated using a dataset of 36 binary images. Weights were
initialized to random values and Training stops when any of
these conditions was satisfied:
1. Maximum Epoch
2. Minimum Gradient
3. Performance Goal

2. CHARACTER RECOGNITION
2.1 Feed-Forward Neural Network (FFNN)
Neural network (NN) can be considered as non-linear
statistical data modeling tool that can model almost any

nonlinear relationship that may exist between inputs and
outputs or find patterns in data. These computational models
are characterized by their architecture, learning algorithm and
activation function [1]. The feed-forward NN (FFNN)
architecture is selected in this study. The FFNN consists of
one or more nonlinear hidden layers. The hidden layers’
activation functions are sigmoidal functions that empower the
network to learn the complex and nonlinear relationship
between the inputs and the targets. In this architecture, a
unidirectional weight connection exists between each two
successive layers. A two-layer FFNN with sigmoidal functions
in the hidden layer and output layer can potentially
approximate any function with finite number of
discontinuities, provided a sufficient number of neurons exists
in the hidden layer [2]. The Log-sigmoid transfer function was
used in hidden layer and the output layer.

3. THE ALGORITHM

In MATLAB, a feed-forward back-propagation network is
created using newff function. User needs to provide input
argument such as input and output data, hidden layer and node
size, node activation function, networks training algorithm and
etc. The GDA, Rprop and SCG training are specified using
traingda, trainrp and trainscg respectively. The initial weight
of the networks is randomly created by default, every time the
newff is called. User also has a choice to initialize the random
initial weight using rands command. The BP weight training
can be directly executed using train function once the
networks and the parameters are properly set. Here ms is
column normalized array of each character and of size <1008
X 36>.

net =newff(minmax(ms), [25,36], {'logsig', logsig'},'traingda');

4. TRAINING ALGORITHMS

Training is the process of determining the optimal weights of
the NN. This is done by defining a performance function

Comparison of Feed Forward Neural Network Training Methods for Visual Character Recognition 367

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

(which is usually the mean square error between the network’s
output and the desired target) and then minimizing it with
respect to weights. The minimization is performed by
calculating the gradient using a technique called back-
propagation which can be done in batch or incremental styles
[1]. In this paper, we used the batch training style. The NNs
were trained using different training algorithms belonging to
two back-propagation classes described as follows:

4.1 Gradient Descent (GD)

Gradient descent is also known as steepest descent, or the
method of steepest descent. This method updates the network
weights and biases in the direction of the performance
function that decreases most rapidly, i.e. the negative of the
gradient. One iteration of this algorithm can be written as
follows [1]:

Δwi = -μigi (1)

Where, Δwi is the vector of weights changes, gi is the vector of
gradients and μi is the learning rate that determines the length
of the weight update. Although the GD algorithm is easy to
implement, it has several disadvantages such as slow learning,
requiring a good training dataset, getting stuck in local
minima and having little or no robustness to noise. Other
modifications can be applied to improve the performance of
GD algorithm.

1) Gradient Descent with Variable Learning Rate (GDA):

The learning rate parameter is used to determine how fast the
BP method converges to the minimum solution. The larger the
learning rate, the bigger the step and the faster the
convergence. However, if the learning rate is made too large
the algorithm will become unstable. In the adaptive learning
technique, the step size is chosen as large as possible while
keeping learning stable. In each iteration, if the new error is
greater than the old one by a predefined ratio (here set to
1.04), the new parameters (weights) are discarded and the
learning rate is decreased (here by multiplying by 0.7).
Otherwise, the new parameters are kept. If the new error is
less than the old error, the learning rate is increased (here by
multiplying by 1.05). The initial value of learning rate was set
to 0.01. In Matlab, Backpropagation training with an adaptive
learning rate is implemented with the function ‘traingda’.

2) Gradient Descent with Variable Learning Rate and
Momentum (GDX):

It combines adaptive learning rate with momentum training. In
order to reduce the sensitivity of the network to fast changes
of the error surface, a fraction of the previous weight change
(called momentum term) can be added to the gradient
decreasing term, as follows [1]:

Δwi = -μigi + p Δwi-1 (2)

where p(lies between 0 to 1) is the momentum parameter. The
momentum parameter p was set to 0.9 in our application. It is

invoked in the same way as traingda, except that it has the
momentum coefficient (mc) as an additional training
parameter.

3) Resilient Backpropagation (RP)

It is a first-order optimization algorithm. For the FFNNs with
sigmoidal activation functions, the gradient can be of very
small magnitude even though the weights are far from their
optimum values. This is due to the slope of sigmoidal
functions that approaches zero as the input magnitude
increases [3]. A solution to this problem is to use only the
direction of the gradient to update the weights, while the
amount of the update is determined by another update factor
(here initially set to 0.07). When the gradient has the same
sign for two successive iterations, the update factor is
increased by a ratio (here set to 1.05). The update factor is
decreased (here by multiplying by 0.8) when the gradient
changes sign from the previous iteration. When the derivative
is zero, the update value is not changed [3] It also has the nice
property that it requires only a modest increase in memory
requirements. You do need to store the update values for each
weight and bias, which is equivalent to storage of the gradient.

4.2 Conjugate Gradient (CG)

All the conjugate gradient algorithms start out by searching in
the steepest descent direction (negative of the gradient) on the
first iteration.

p0= -g0 (3)

A line search is then performed to determine the optimal
distance to move along the current search direction:

xk+1 = xkαkpk (4)

Then the next search direction is determined so that it is
conjugate to previous search directions. The general procedure
for determining the new search direction is to combine the
new steepest descent direction with the previous search
direction [7]:

pk = -gk + βkpk-1 (5)

where βk is a constant which is computed to force the
consecutive directions to be conjugate.

The various versions of the conjugate gradient algorithm are
distinguished by the manner in which the constant βk is
computed.

1) Fletcher-Reeves Update (CGF):
This method updates βk as the norm squared of the current
gradient vector divided by the norm squared of the previous
gradient vector [4]:

βk = gk
Tgk / g

T
k-1gk-1 (6)

2) Polak-Ribiére Update (CGP):
This method updates βk as the dot product of the previous
change in the gradient vector with the current gradient vector

Sukhleen Bindra Narang, Manjeet Singh and Kunal Pubby

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

368

divided by the norm squared of the previous gradient vector
[4]:

βk = ∆gk-1
Tgk / g

T
k-1gk-1 (7)

3) Powell-Beale Restarts (CGB):
In all CG algorithms the search direction is periodically reset
to the negative direction of the gradient. The standard reset
point occurs when the number of iterations is equal to the
number of network parameters (weights and biases), but there
are other reset methods that can improve the efficiency of
training. One such reset method was proposed by Powell and
Beale. This technique restarts if there is very little
orthogonality left between the current gradient and the
previous gradient. This is tested with the following inequality:
[5]:

|gT
k-1gk-1 | ≥ 0.2 ||gk||

2
 (8)

If this condition is satisfied, the search direction is reset to the
negative of the gradient.

4) Scaled Conjugate Gradient (SCG):
The introduced CG algorithms so far are based on a line
search in each iteration which is computationally expensive.
To overcome this shortcoming, the SCG method combines the
trust region approach with CG algorithm. SCG does not
contain any user dependent parameters whose values are
crucial for the success of SCG. By using a step size scaling
mechanism, SCG avoids time consuming line search
operations which makes the algorithm faster than any other
second order algorithm. For more details, the reader is referred
to [6].

Same as the GD algorithms, in most of the CG algorithms, the
step size is adjusted at each iteration. Here, the Charalambous’
search method [7] was utilized in all the CG algorithms except
the SCG to adjust the step size.

5. EXPERIMENTAL RESULTS

5.1 Database

The database used to train and test the systems described in
this paper contains the binary images of characters as shown
in Fig. 1.

Fig. 1: Numeric and alphabetic Symbols

All the images were size normalized to fit in a 42x24 pixel
box (while preserving the aspect ratio). Each character was
normalized using column normalization in MATLAB. The
normalized data was used as the inputs to the network. There
were 36 target values which correspond to one for each
training sample and size of the network was 1008 x 36.

5.2 Evaluation Criteria

The BP estimation results were compared in terms of training
performance. The training performance of the NNs was
compared in terms of 1) training time, 2) number of training
iterations to reach the optimal weights, 3) mean square error
and 4) Regression rate.

5.3 Parameter setup

The default value of Matlab ANNs training parameters were
used for all the algorithms except for the learning rate, goal
and the maximum number of epochs.

net.trainParam.goal=0;

net.trainParam.epoches = 2000;

net.trainParam.lr = 0.01;

5.4 Train and Test Strategy

Same dataset was used for all training algorithms. The
network was trained with 100 % training dataset. Training was
done using feed-forward net with 1 hidden layer and at
different number of hidden units. Input and output layers were
having log sigmoid transfer function. The mean square error
(MSE) is the condition to terminate training of all the BP
methods. MSE is originally set at 0, however, these BP
methods can also stop once the training exceeds the number of
epoch set. After the Training, network is simulated with same
input data to calculate the accuracy.

5.5. Results

The performance of different training algorithms is shown in
Table1, and Table2. Table 1 shows the performance of
training algorithms at 25 hidden units. Table 2 shows the
performance of

Table 1: Training performance at 25 hidden units

Avg.
No:
of

epoch
s

Avg.
Traini

ng
Time(s

)

MSE Regressi
on

Accuracy(
%)

Gradient
Descent

GD
A

1568 13 2.89e-
05

0.9998 97.2

GD
X

583 5 0.00157 0.97069 94.4

RP 59 0.7 2.08e-
05

0.99962 100

Conjugat

CGP 2000 54 0.00674 0.87163 77.8
CG
B

2000 57 0.01014 0.7922 41.6

Comparison of Feed Forward Neural Network Training Methods for Visual Character Recognition 369

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015

e
Gradient

SCG 345 5 0.00077
2

0.98561 100

CGF 2000 53 0.0229 0.45771 16

Table 2: Training Performance at 50 hidden units

Avg.
No: of
epoch

s

Avg.
Trainin

g
Time(s)

MSE Regressio
n

Accurac
y (%)

Gradient
Descent

GDA 614 8 0.00156 0.9708 97.2
GDX 479 7 1.78e-

05
0.9986 100

RP 34 1 7.27e-
07

0.9999 100

Conjugate
Gradient

CGP 327 13 0.00307 0.94152 86.1
CGB 438 16 0.00224 0.95773 88.8
SCG 279 5 9.63e-

07
0.9999 100

CGF 1288 47 0.00771 0.84641 77.8

training algorithms at 50 hidden units. These values were
averaged over the 10 runs of the algorithms. The results were
obtained on Intel i5, 2.67 GHz processor with 3.0 GB of
RAM. Among the GD algorithms with 25 hidden units,

The best results in terms of both speed and accuracy are
obtained using RP. Among the GD algorithms with 50 hidden
units, GDX has improved training performance than GDA, but
RP is still leading in overall performance.

In case of CG, with 25 hidden units, CGF and CGB have
worst training performance and accuracy. CGP has improved
training performance, but training time is much longer.

Best results are obtained using SCG in terms of time, speed
and Accuracy.

Among the CG algorithms with 50 hidden units,

CGF has worst training performance and accuracy while CGP
and CGB have almost same training parameters. Again, best
results are obtained using SCG with much improved training
performance.

Comparing all the seven different training algorithms together,
it is found that the training performances significantly differ.
However, the best training performance and fastest training
are obtained using the RP algorithm.

6. CONCLUSION AND FUTURE WORK

Comparison of the results of the study indicated that the
original research hypothesis that RP would perform faster in
all cases was proven correct. In CG, SCG was superior in
training performance and training time. To eliminate the
possible confounding variables in this study, the number of
trials could be increased and the size of the data sets also
enlarged. Other back-propagation based algorithms could be
comparatively tested fairly easily, utilizing the same data sets
and similar network structures.

Besides the BP methods, there also are other neural networks
methods like the radial basis function (RBF) that we can
implement in character recognition. These methods will be
studied next.

REFERENCES

[1] Jang, J.S.R., Sun, C.T. and Mizutani, E., Neuro-Fuzzy and Soft
Computing: A Computational Approach to Learning and Machine
Intelligence, NJ: Prentice-Hall, 1997.

[2] Cybenko, G., “Approximation by superpositions of a sigmoidal
function”, Math Control Signals Systems, Vol. 2, pp. 303-314, 1989.

[3] Riedmiller, M. and Braun, H., “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm”, in proc. IEEE
International Conference on Neural Networks, San Fransisco, USA,
Mar. 1993, pp. 586 – 591.

[4] Fletcher, R. and C.M. Reeves, C.M., “Function minimization by
conjugate gradients,” Computer Journal, Vol. 7, pp. 149–154, 1964.

[5] Powell, M.J.D., “Restart procedures for the conjugate gradient method,”
Mathematical Programming, Vol. 12, pp. 241–254, Dec. 1977.

[6] Moller, M.F., “A scaled conjugate gradient algorithm for fast supervised
learning”, Neural Networks, Vol. 6, pp. 525–533, 1993.

[7] Charalambous, C., “Conjugate gradient algorithm for efficient training
of artificial neural networks,” IEEE Proceedings, Vol. 139, pp. 301–310,
June 1992.

[8] Moriera, M. and Fiesler, E., “Neural Networks with Adaptive learning
rate and Momentum terms,” IDIAP Technical Report, October 1995.

